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Abstract. In this paper we study the low temperature (T ) properties of the Kondo insulator FeSi within
the X-boson approach. We show that the ground state of the FeSi is metallic and highly correlated with a
large effective mass; the low temperature contributions to the specific heat and the resistivity are of the
Fermi-liquid type. The low temperature properties are governed by a reentrant transition into a metallic
state, that occurs when the chemical potential crosses the gap and enters the conduction band, generating
a metallic ground state. The movement of the chemical potential is due to the strong correlations present in
the system. We consider the low temperature regime of the Kondo insulator FeSi, where the hybridization
gap is completely open. In this situation we identify the two characteristic temperatures: the coherence
temperature T0 and the Kondo temperature TKL. In the range T < T0, we identify a regime characterized
by the formation of coherent states and Fermi-liquid behavior of the low temperature properties; in the
range TKL > T > T0, we identify a regime characterized by an activation energy. Within the X-boson
approach we study those low temperature regimes although we do not try to adjust parameters to recover
the experimental energy scales.

PACS. 75.30.Mb Valence fluctuation, Kondo lattice, heavy-fermion phenomena – 71.10.Ay Fermi-liquid
theory and other phenomenological models – 73.61.Ng Insulators

1 Introduction

The Kondo insulators (KI) have been studied inten-
sively since their classification as highly correlated insu-
lators systems by Aeppli and Fisk [1]. Among the large
number of metallic rare earths and actinide compounds
there are some of then that present insulator behavior
(Ce3Bi4Pt3, SmB6, UNiSn, FeSi, etc.). These materials ex-
hibit a very small gap and it is believed that the gap arises
in the lattice, from the hybridization between the local-
ized electrons (f -electrons) and the conduction electrons
(c-electrons) [2]. The KI’s usually have cubic symmetry
and a mixed-valence character for the f -elements [2,3].
The main theoretical interest in these materials is due to
the existence of large many-body renormalizations. The
gaps inferred from optical, magnetic, transport and ther-
modynamics properties are almost an order of magnitude
smaller than those obtained by band computation tech-
niques [2,4]. Also the spectral densities inferred from high
resolution angle-resolved photoemission [5] (ARPES) indi-
cate the existence of an extremely temperature dependent
narrow f feature in the electronic density of states close to
the top of the valence band, which can be identified with
a band of heavy quasi-particles. The strong Coulomb cor-
relations associated with the f character of the states at
both edges of the band gap, are also assumed to be respon-
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sible for the universal temperature dependencies exhibited
by this class of materials [4].

Due to their unusual thermodynamic properties the
compound FeSi [6] is also classified as a Kondo insulator.
The FeSi specific heat Cv, presents a broad maximum at
around 250 K. The magnetic susceptibility χ rises rapidly
in the region where Cv is maximum and also presents a
maximum at approximately 500 K, but at low temper-
atures, presents a minimum at around 90 K and grows
more than two orders of magnitude as the temperature is
lowered below 1 K [7–12].

It was showed by Varma [13] that Kondo rare earth
compounds with insulating ground state must, except for
a small probability, be mixed valence (he also includes FeSi
in his discussion). In the case of FeSi, the ground state
is Fe2+ (d6) hybridized with Si. The local symmetry is
threefold so that the angular momentum is quenched, the
ground state spin is zero. The lowest-energy excitation is
a multiparticle-hole excitation to an Fe1+ (d7) state (S =
3/2), which is hybridized to Si bands. The mixed valence
occurs because the configurations (Fe2+–Fe1+) boundary
lie, very close to the chemical potential, in the gap of the
compound. In particular he showed that in this class of
mixed valence materials, included FeSi, both the RKKY
and the double exchange interactions vanish.

Recently the interest on this compound was renewed
by the discovery that FeSi doped with Co or Mn shares
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the very highly anomalous Hall conductance of the mag-
netic semiconductor (GaMn)As [14], which presents the
possibility of using doped Co or Mn-FeSi with transition
metals as a potential application as injectors for spintron-
ics applications due to the large magnetic-field effects on
its electrical properties [15].

Paschen et al. [10] pointed out that the ground state
of FeSi is not so simple, with part of the magnetic mo-
ments interacting between themselves and part remaining
paramagnetic down to at least 50 mK. Recently a very
complete work on the transport and magnetic properties
of FeSi was performed by Glushkov and co-workers [16].
Their results indicate that below 100 K a metallic heavy
fermion state is formed, as a result of fast fluctuations in
the density of states and as we have shown in this work,
this metallic ground state governs the low temperature
properties of the system. By decreasing the temperature
more, down to the Curie temperature TC � 15 K the
system suffers a ferromagnetic transition accompanied by
the formation of nanosize anisotropic ferromagnetic re-
gions (ferrons) and finally at Tm � 7 K the system suffers
a transition to the ferron state for a spin-glass ground
state. Our model is not addressed to describe these rich
magnetic behaviors because we only consider the param-
agnetic solutions of the model.

Another set of magnetization measurements, per-
formed by Sluchanko et al. [17], for high quality sin-
gle crystals of FeSi in a wide range of temperatures
(1.5–300 K) and a magnetic field (up to 120 KOe) showed
that the increase of the magnetic susceptibility observed
in FeSi at temperatures below 70 K could be associated
with the evolution of the Pauli-like susceptibility param-
agnetic contribution from the narrow conduction band at
the Fermi level. Finally Lunkenheimer et al. [9] performed
a series of measurements of AC conductivity of polycrys-
talline FeSi at temperatures 80 mK ≤ T ≤ 450 K and fre-
quencies 20 Hz ≤ ν ≤ 1 GHz and obtained a result that
shows that at very low temperatures, and in the metal-
lic side, the dominant charge carriers behave as band-
like states and there is no signal of hopping conductivity.
They showed that below 4.5 K the dielectric constant in-
creases by a factor of 10 when the temperature was lowered
down to 1.6 K. They concluded that this strong increase
could indicates a transition into a metal-like state at low
temperatures. This interpretation was also suggested by
the experimental results of Hunt et al. [8] and Chernikov
et al. [11].

It has been suggested by Degiorgi [18] that the low
temperature regime of FeSi is governed by an impurity
band inside the gap, with residual impurity concentration
at the level of 1019 cm−3, what suggests a metallic ground
state for this material. In the same line, Paschen et al. [10]
experimental results of the low temperature specific heat,
also suggest a metallic ground state but with electrons
highly correlated, with an effective-mass ratio of approxi-
mately 900 and also suggest that the origin of this metallic
ground state could be an impurity band formed in the gap
with a “spectacularly” narrow band width.

Schlottmann [19] considered a finite concentration of
Kondo holes forming an impurity band in the Kondo in-
sulator gap. To describe the system he employed the An-
derson lattice model within the U2 expansion approxima-
tion [20], he neglected the k dependence of self-energy and
contrary to the X-boson, this approximation is only valid
for small Coulomb correlation U values. He showed that
a finite concentration of Kondo holes gives rise to an im-
purity band in the gap which pins the Fermi level and
calculated the charge susceptibility and linear T specific
heat coefficient γ, that correspond to an effective-mass
enhancement of 15–20 over the mass of the conduction
electrons. It is important to emphasize that the experi-
mental results of Paschen et al. [10] indicate, in the very
low temperature regime, an enhancement of the effective-
mass ratio of approximately 900, which agrees very well
with the results obtained by the present X-boson treat-
ment.

On the other hand Arushanov et al. [21] performed
measurements of magnetization and magnetic susceptibil-
ity to determine the FeSi band parameters. They applied
the Kamimura model [22] to explain the low temperature
Curie-Weiss susceptibility, which is attributed, by several
authors [4,10,18], to localized Anderson impurities in the
gap. The Kamimura model takes into account the intra-
site interactions between the Anderson localized electrons
and their calculations showed that the contribution to the
magnetic susceptibility from the single occupied Ander-
son localized states in their FeSi samples were completely
negligible. According to their results the temperature de-
pendence of χ in the temperature range of 5–300 K could
be explained by the contribution from the temperature
dependent parts due to paramagnetic centers and due to
the carriers excited thermally in the intrinsic conductivity
region.

Another possible scenario for the insulator-metal tran-
sition in doped Kondo insulators was proposed recently
by Peche et al. [23]. They studied the Kondo insulator
compound (Ce1−xLax)3Bi4Pt3, where the impurity band
formed inside the gap drives the position of the chem-
ical potential µ and controls the properties of the sys-
tem. When the La concentration attains a critical value,
µ enters the conduction band and the system becomes
metallic. On the other hand, the experimental measure-
ments indicate that a very small concentration of impuri-
ties (x � 0.005) is enough to produce the insulator-metal
transition [24], suggesting that the insulator-metal transi-
tion does not take place within the impurity band, because
according to percolation theory [25] a much larger concen-
tration of impurities it is necessary so that the impurity
band becomes a conductor.

In this work we propose a model to describe the Kondo
insulator FeSi, in the low temperature regime, where the
hybridization gap is completely open. The model is con-
sistent with the scenario indicated by the experimental
works of Lunkenheimer et al., Hunt et al. and Chernikov
et al. [8,9,11], where a reentrant transition into a metallic
state, at very low temperatures is suggested. In our case,
the insulator-metal transition in FeSi is driven by strong
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Coulomb correlations that occur when the chemical poten-
tial µ crosses the gap and enters in the lower conduction
band, generating a metallic ground state. For simplicity
we do not consider the role of the impurity band as made
by Peche et al. [23]. In our model the existence of an im-
purity band to produce the insulator-metal transition is
not necessary, although the interplay between strong cor-
relations and disorder originated from localized states of
the impurity band, inside the gap, and in the intermediate
to low temperature range, play a relevant role in the prop-
erties of FeSi, once they contribute to change the position
of the chemical potential µ inside the gap.

The periodic Anderson model (PAM) at half-filling has
been extensively used to study the Kondo insulators [4].
This model has an indirect hybridization gap ∆ind be-
tween bands of localized and conduction electrons and a
direct gap ∆dir associated with the minimum energy for
interband transitions [26]. We have recently studied the
FeSi using the atomic approach [27,28] and we were able
to adjust simultaneously the static conductivity, the resis-
tivity and the dynamical conductivity to the experimental
results, and we obtained a fair agreement with the experi-
mental results. The PAM with U → ∞ has been suggested
as an adequate model to study the KI [1], and in par-
ticular the compound Ce3Bi4Pt3 was studied employing
the slave-boson technique in the mean field approximation
(SBMFT) [29–31]. The SBMFT is designed to work in the
Kondo regime, at low temperatures, because it captures
the strong spin fluctuations, characteristic of the Kondo
limit, but the method presents problems to describe tem-
perature properties because it produces a spurious second-
order phase transition at the Kondo temperature TKL [30,
32–34] and at temperatures T > TKL the conduction and
localized electrons decouple, which is an unphysical result.

In this work we employ the X-boson method [34,35]
to study the PAM in the limit of infinite Coulomb repul-
sion U → ∞. Recently we employed the X-boson method
to describe thermodynamics properties of metallic heavy
fermions compounds and we have obtained results in qual-
itative agreement with experimental works and other the-
oretical techniques [36]. The X-boson includes the cor-
relation in an analog way to the slave boson mean field
theory (SBMFT), but do not present the well known spu-
rious second order temperature phase transition of the
SBMFT and carry some of the local quantum fluctuations
that are absent in the quasi-particle Green’s functions of
this method; therefore, its applicability is not restricted
to the extreme Kondo region, it is a good approximation
to describe the intermediate valence regime, characteris-
tic of the Kondo insulators. The method satisfies the im-
portant property of completeness, that is not satisfied,
for example, by several approaches based on the equation
of movement method (EOM), that describes the Kondo
peak with a di-gamma family of approximations [37]. Be-
sides this, the X-boson does not present several thermo-
dynamic inconsistencies, characteristic of Hubbard I-like
approximations and the SBMFT approach; the X-boson
solution is obtained by solving a self-consistent equation
system, where the localized energies are renormalized in

such a way that the solution lies in a free Helmholtz energy
minimum [35]. But the X-boson also presents limitations
that should be taken into account; the formalism does
not incorporate a finite imaginary part of the self-energy
(although the method can be extended to include such ef-
fects). Therefore, the method is not adequate to describe
the transport properties of the high temperature regime
(T > TKL); those effects will lead the gap to close and the
compound becomes a dirty metal.

The finite lifetime effects were considered by Fu and
Doniach [38] in their study of the Kondo insulators. They
described the intermediate to high temperature regime of
the FeSi, employing a two Hubbard band model within the
U2 expansion approximation [20], but with the k depen-
dence of the self-energy neglected. The results obtained
were in good agreement with the experimental magnetic
susceptibility and the optical conductivity, but the model
did not explain the problem of the missing spectral den-
sity in the optical conductivity reported by Schlesinger
et al. [7].

We restrict our study to the low temperature proper-
ties of FeSi, where the X-boson approach is a good approx-
imation, and in particular we calculate the specific heat,
resistivity and magnetic susceptibility in this temperature
regime. In Section 2 we present a brief description of the
X-boson method with the relevant formulas. In Section 3
we derive the formulas, within the X-boson approach, used
to calculate the transport properties: specific heat, resis-
tivity and susceptibility. In Section 4 we discuss the results
and finally in Section 5 we present the conclusions.

2 Model and method: the X-boson approach

To study the PAM Hamiltonian in the U = ∞ limit [39,
40], the f -levels with double occupation are projected out
from the space of the local states by employing the Hub-
bard X operators [41,42] and we obtain

H =
∑

k,σ

εk,σc†k,σck,σ +
∑

σ,f

Ef,σXf,σσ

+
∑

k,σ

(
Vf,k,σX†

f,0σck,σ + V ∗
f,k,σc†k,σXf,0σ

)
. (1)

The first term of the equation represents the Hamiltonian
of the conduction electrons (c-electrons), associated with
the itinerant electrons (s, p and d orbitals). The second
term describes the localized f levels and the last one cor-
responds to the interaction between the c-electrons and
the f -electrons via hybridization between the f and c
states. This Hamiltonian can be treated by the X-boson
approach [34,35] for the lattice case, and the cumulant
Green’s function (GF) are then given by

Gff
kσ(z) =

−Dσ (z − εkσ)(
z − Ẽf,σ

)
(z − εkσ) − |Vσ(k)|2Dσ

, (2)

Gcc
kσ(z) =

−
(
z − Ẽf,σ

)

(
z − Ẽf,σ

)
(z − εkσ) − |Vσ(k)|2Dσ

, (3)
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and

Gfc
kσ(z) =

− DσVσ(k)(
z − Ẽf,σ

)
(z − εkσ) − |Vσ(k)|2Dσ

, (4)

where z = ω + iη, with η → 0+. The correlations ap-
pear in the X-boson approach through the quantity Dσ =
R+nf,σ, where R = 〈X0,0〉. This simple factor introduces
essential differences with the SBMFT [34,35] and these
GF cannot be transformed into those of two hybridized
bands of uncorrelated electrons with renormalized param-
eters, as it is done in the SBMFT.

In the X-boson approach the quantity Dσ must be cal-
culated self-consistently through the minimization of the
corresponding thermodynamic potential with respect to
the parameter R, at the same time Ẽf,σ = Ef,σ + Λ,
where Λ is a Lagrange multiplier. When the total num-
ber of electrons Nt, the temperature T and the volume
Vt are kept constant one should minimize the Helmholtz
free energy F , but the same minimum is obtained by em-
ploying the thermodynamic potential Ω = −kBT ln(Q),
(where Q is the grand partition function) while keeping
T , Vt, and the chemical potential µ constant (this result
is easily obtained by employing standard thermodynamic
techniques). In the X-boson method the grand thermody-
namic potential is [34,35]

Ω = Ω0 +
−1
β

∑

k,σ,±
ln [1 + exp(−β ωk,σ(±))]

+ Ns Λ(R − 1), (5)

where

Ω0 = −Ns

β
ln

[
1 + 2 exp(−βẼf )

(1 + exp(−βẼf ))2

]
, (6)

β = 1/kBT , and kB is the Boltzmann constant.
After the minimization of the thermodynamic poten-

tial Ω with respect to the R parameter we obtain

Λ =
−1
Ns

∑

k,σ

|Vσ(k)|2 [nF (ωk,σ(+)) − nF (ωk,σ(−))]√(
εk,σ − Ẽf,σ

)2

+ 4 |Vσ(k)|2 Dσ

, (7)

where nF (x) is the Fermi-Dirac distribution

nF (z) = [1 + exp (β z)]−1 (8)

and Ns is the number of sites. To simplify the calculations
we shall consider a rectangular conduction band of width
W = 2D, centered at the origin, and a real hybridization
constant Vσ(k) = V . We then obtain

Λ =
−V 2

D

∫ D

−D

dεk
nF (ωk(+)) − nF (ωk(−))√(

εk − Ẽf

)2

+ 4V 2Dσ

, (9)

where the values ωk,σ(±) are the poles of the GF, given by

ωk,σ(±) =
1
2

{(
εk,σ+Ẽf

)
±

√(
εk,σ − Ẽf

)2

+ 4V 2Dσ

}
.

(10)

In the present paper we adopt a schematic classification
proposed by Varma [43] and recently reintroduced by
Steglich et al. [44,45], which illustrates the competition
between magnetic order and Fermi liquid formation. This
classification is given in terms of the dimensionless cou-
pling constant for the exchange between the local f spin
and the conduction-electron spins, given by g = ρc(µ)|JK |.
The JK is the Kondo coupling constant, connected to the
parameters of the PAM via the Schrieffer-Wolff transfor-
mation [46] that gives JK = 2V 2/|Eo

f − µ| when U → ∞.
Within the SBMFT or the X-boson we then have that

g = ρc(µ)|JK | ∼ V 2

D|Eo
f − µ| , (11)

where for simplicity we take ρc(µ) = 1/2D. The qual-
itative behavior of the exemplary Ce-based compounds
is related to this parameter as follows: when g > 1, the
compound presents an intermediate valence (IV) behav-
ior, while for g < 1 it is in a heavy fermion Kondo regime
(HF). There exists a critical value gc at which the Kondo
and the RKKY interactions have the same strength, and
non Fermi-liquid (NFL) effects have been postulated when
g = gc. For gc < g < 1, the magnetic local moments are
not apparent at very low temperatures and the system
presents a Fermi liquid behavior, while for g < gc the sys-
tem is in the local magnetic moment regime (LMM). We
point out that the parameter g classifies the regimes of the
PAM only in a very qualitative way. Finally, in its present
form the X-boson approach includes hybridization effects
only to second order in V , and the self-energy does not de-
pend on the wave vector. We then conclude that there is
no RKKY interaction within the present approximation,
and we cannot discuss the non-Fermi liquid behavior, nor
find the value of gc.

3 Calculation of the properties

3.1 Specific heat

To calculate the specific heat employing Ω we first show
by standard thermodynamic techniques that the entropy
S is given by

S = −
(

∂F

∂T

)

Nt,V

= −
(

∂Ω

∂T

)

µ,V

. (12)

Assuming a conduction band with constant density of
states and width W = 2D and in the absence of mag-
netic field, we find from equations (5, 6) that

S = So + SFL, (13)

with

So = Ns

[
ln

(
1 + 2β exp(βε̃f )
(1 + exp(βε̃f ))2

)
− 2βε̃f

1 + nF (ε̃f )

]
, (14)
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and

SFL =
1
D

2∑

�=±

∫ D

−D

dx ω�(x) nF (ω�(x))

+ ln [1 + exp (β(ω�(x)))] , (15)

and then that

Cv = T

(
∂S

∂T

)

Nt,V

= −T

(
∂2Ω

∂T 2

)

µ,V

+T

(
∂µ

∂T

)

Nt,V

(
∂N

∂T

)

µ,V

, (16)

with

−T

(
∂2Ω

∂T 2

)

µ,V

= −T

(
∂2Ω0

∂T 2

)

µ,V

+
kB β2

D

2∑

�=±

∫ D

−D

dx ω2
� (x) nF (ω�(x)) [1 − nF (ω�(x))]

−T Ns

(
∂2(Λ(R − 1))

∂T 2

)

µ,V

, (17)

where

ω±(x) =
1
2

(x + ε̃f ) ± 1
2

√
(x − ε̃f )2 + 4 |V |2 Dσ (18)

and

− T

(
∂2Ω0

∂T 2

)

µ,V

= −2Ns kB β2ε̃2
f exp(βε̃f )

× [3 + 2 exp(βε̃f )]
[exp(βε̃f ) + 2]2 [exp(βε̃f ) + 1]2

. (19)

3.2 Electrical resistivity

The static conductivity σdc(T ) is obtained considering
the limit of the dynamical conductivity ω → 0+ for
σ(ω, T ) [27] and is given by

σdc (T ) =
1

2D

∫ ∞

−∞
dω

(
−dnF (ω)

dω

)∫ D

−D

dε (ρc,σ(ω; ε))2,

(20)
where β = 1/kBT with kB being the Boltzmann constant,
nF is the Fermi distribution and the conduction density
of states is given by

ρc,σ(ω; ε) =
1
π

lim
η→0

Im {Gcc,σ(k, ω + i |Γ |)} , (21)

where the conduction Green function Gcc,σ is given by
equation (3). The static resistivity is obtained inverting
equation (20)

ρdc(T ) =
1

σdc (T )
. (22)

Notice that this expression for the conductivity must be
used with care. In the problem considered here, there
is translational invariance and consequently k is a good
quantum number. However in real systems, impurity scat-
tering is always present and this limits the electron mean
free path. In the numerical calculations, this is taken into
account by including a finite lifetime for the conduction
electrons. Formally this is done by replacing, ω → ω + iΓ ,
in the conduction Green’s functions [47], where Γ is con-
sidered temperature independent. We pointed out that
here we are interested in the temperature dependence of
the conductivity which is not affected by the magnitude of
Γ . We would like to stress, that this procedure is necessary
because the X-boson approach does not present finite life-
time effects in its Green’s functions, in consequence the
method is not adequate to describe the intermediate to
high temperature effects of the FeSi. For this reason we
restrict our analysis to the low temperature regime of the
PAM. The numerical calculation of the conductivity, at
low temperatures, must be taken with care because the in-
tegral in equation (20) is performed over the very peaked
functions and it is necessary to find the position of each
peak in each stage of the integration to obtain a reliable
result.

3.3 Magnetic susceptibility

To calculate the magnetic susceptibility χ we apply an
external magnetic field h along the z direction and we
employ the general thermodynamic relation

χ =
(

∂M

∂h

)

Nt,V

= − 1
V

(
∂2F

∂h2

)

Nt,V

, (23)

where F is the Helmholtz free energy

F = Ω + µNt, (24)

and the expression for the grand thermodynamic potential
Ω is given by equation (5), but with the energies modified
by the external magnetic field

ωk,σ(±) = ωk,σ(±) − σ.h. (25)

The susceptibility is obtained through equations (5) and
(23, 24)

χ = χo + χFL, (26)

with the zero order and Fermi-liquid magnetic suscepti-
bilities given by

χo = −β

2
n2

F

(1 + nF )
, (27)

χFL =
−β

4

∑

k,l=±
sech2

[
1
2

(βωkσ(l = ±))
]
, (28)

where nF is the Fermi distribution function and the quasi-
particle energies ωkσ(l = ±) are given by equation (25).
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Fig. 1. Density of states for the localized f electrons ρ(ω) as
function of the energy ω, using the following set of parameters
Ef = −0.15D, V = 0.08D and total number of particles per
site Nt = 1.55.

4 Results and discussion

We consider the impurity band an important ingredient to
elucidate the properties of the compound FeSi, because the
localized states in the gap can drive the chemical potential
toward the conduction band, but we concentrate the dis-
cussion of the paper in the strong correlation mechanism
that also drives the movement of the chemical potential
to cross the conduction band. In the real compound these
two mechanism probably act together but from the the-
oretical point of view it is not easy to consider, at the
same time, the roles of the disorder and the correlation.
Thus we concentrate the paper on the study of the correla-
tion effects. As FeSi is a highly correlated semiconductor,
we have employed the Anderson model to parametrize the
compound. We work with the Anderson model, in the limit
of U → ∞, which was suggested by Aeppli and Fisk [1] as
an especially interesting limit to describe the Kondo in-
sulator FeSi. In this model, the total number of electrons
per site Nt, varies from Nt = 0 to 3 electrons, one local-
ized and highly correlated and the other two uncorrelated
(conduction electrons). As it happens with the Anderson
model, the hybridization opens a gap in the density of
states and in the intermediate valence regime, this gap
occurs approximately in the region where Nt = 1.5–1.6
(FeSi is an intermediate valence compound [13]). For this
reason we chose in all the calculations, Nt = 1.55 to have
the chemical potential localized inside the gap. But by
varying the temperature, the correlation effects, drive the
chemical potential through the gap and, at low temper-
atures, the chemical potential crosses the gap and enters
the conduction band. The same effect can be obtained
alloying the system. This movement of the chemical po-
tential is not present in the intrinsic semiconductors, in
which the chemical potential is pinned inside the gap.

In Figure 1 we present the density of states of the local-
ized f electrons as function of the energy using the follow-
ing parameters set Ef = −0.15D, V = 0.08D. In each step
of the numerical calculations the total number of particles
per site remains constant, and the chemical potential µ is
varied at each T until obtaining a fixed Nt = 1.55. At in-

Fig. 2. Evolution of the Steglich’s parameter g vs. T , at low
temperatures, when the chemical potential µ is located inside
the gap and enters the metallic region. The dashed line in-
dicates the temperature where the insulator-metal transition
occurs.

termediate temperatures the chemical potential (µ = 0.0
in Fig. 1) is located inside the gap (see curve correspond-
ing to T = 0.005D), but as the temperature decreases, the
chemical potential crosses the gap and at the temperature
T � 0.0008D enters the conduction band. At this temper-
ature the system suffers an insulator-metal transition due
to the strong correlations; the localized and conduction
occupation numbers are practically constant and assume
the values nf = 0.665 and nc = 0.885 respectively. This
value of nf corresponds to an intermediate valence situ-
ation. The variation of the occupation numbers are only
relevant for T > TKL, but as the X-boson does not incor-
porate finite lifetime effects we exclude this region from
our analysis.

In Figure 1, at very low temperatures, µ enters a re-
gion of a huge density of states as we can see from the
curves corresponding to T = 0.0005D and T = 0.00001.
In the inset of the figure we plot the density of states
of conduction c electrons as function of the energy, as in
the ρf curve the chemical potential is located at zero and
we indicate the magnitude of the indirect gap ∆ind =
0.008541D, which is given approximately by the equation
∆Ind = πV 2Dσ

2D ∼ 9.0 × 10−3D and is associated with the
transport properties of the system.

In Figure 2 we present the evolution of the Steglich’s
parameter g, as we decrease the temperature, calculated
with equation (11), and in this very low temperature
regime g = 0.214, the ground state of the system is metal-
lic and exhibits a heavy fermion character. The dashed
line indicates the temperature where the insulator-metal
transition occurs.

In Figure 3 we present the derivative of (dnfc/dT ) =(
d〈c†iσfiσ〉/dT

)
vs. T , for the same set of parameters given

in Figure 1. We define the lattice Kondo temperature ac-
cording to our previous paper [36]. Bernhard et al. [48],
defined a lattice Kondo temperature TK (we call it TKL

in this work) as equal to the T corresponding to the mini-
mum of the temperature derivative of the average 〈c†iσfiσ〉,
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Fig. 3. Derivative of (dnfc/dT ) vs. T , for the same set of pa-
rameters given in Figure 1. We indicate by the dotted lines the
coherence and Kondo temperatures, respectively T0 = 0.0012D
and TKL = 0.0039D.

Fig. 4. Specific heat Cv, entropy S and conduction density
of states at the chemical potential ρc(µ) vs. T using the same
parameters set of Figure 1.

that measures the “transference” of electrons from the lo-
calized levels to the conduction band and vice-versa. On
the other hand, Peres et al. [49], define a correlation tem-
perature T ∗ (we call it T0 and we identify this temperature
as the coherence temperature), equal to the T correspond-
ing to the maximum of the temperature derivative of the
parameter 〈c†iσfiσ〉. From the figure we obtain the follow-
ing values for the coherence and Kondo temperatures re-
spectively T0 = 0.0012D and TKL = 0.0039D.

In Figure 4 we present the different contributions of the
specific heat Cv, the entropy S and the conduction density
of states at the chemical potential ρc(µ) vs. temperature
T using the same parameters set of Figure 1. Although it
is Cp that is generally measured, the difference Cp − Cv

is usually small in liquids and solids, and shows a depen-
dence with T similar to that obtained with the Cp of FeSi,
(see for example the experimental works of Jacarino and
co-workers [6] and Paschen et al. [10]), that measured Cp

in the very low temperature region. From this figure we
can approximately identify the low temperature regimes
that emerge from the experimental results [7–12]. In the
range TKL > T > T0, we identify the regime character-

Fig. 5. Specific heat coefficient γ vs. T using the same parame-
ters set of Figure 1. The dashed line indicates the temperature
where the insulator-metal transition occurs.

ized by an activation energy and for T < T0, we have a
regime characterized by the formation of coherent states.
The zero order contribution to Cv(0) is always negative
and mainly contributes to the activated regime, whereas
the Fermi-liquid contribution Cv(FL) dominates all the
temperature range. At temperatures below T = 0.0008D,
the chemical potential crosses the gap and enters the con-
duction band generating a reentrant metallic ground state.

We showed in a previous paper [36], that the entropy
per site at low T tends to zero in the heavy Fermion Kondo
(HF-K) regime (µ is located in the first peak), correspond-
ing to a singlet ground state, and it tends to kB ln 2 in
the Heavy Fermion Local Magnetic Moment (HF-LMM)
regime (µ is located in the second peak), corresponding to
a doublet ground state at each site. From the same figure
we can see that the entropy S per site tends to zero at
low temperatures, and we conclude that the system goes
to the Kondo singlet ground-state, while the huge value of
density of states f at the chemical potential µ (see Fig. 1)
signals the simultaneous appearance of the Kondo reso-
nance.

In Figure 5 we present the γ coefficient of specific
heat and we can see a huge increase of this quantity as
the chemical potential enters the conduction band. The
dashed line indicates where the insulator-metal transition
occurs. This result agrees well with the Paschen et al. ex-
perimental measurements of this parameter for FeSi [10].
They found an effective-mass ratio of approximately 900,
but contrary to their suggestion that the origin of this
metallic ground state could be an impurity band formed
in the gap with a “spectacularly” narrow band width, we
attribute this huge increase of the γ coefficient to the reen-
trant behavior of µ at low temperatures. The specific heat
presents the general structure analyzed in a previous pa-
per [36], but at very low temperatures, when the chemical
potential is located inside the conduction band, Cv goes
linearly to zero as we can see from Figure 6, where we
adjust the theoretical results with the function Cv = AT ,
and we obtain the parameter A = 785.304.

In Figure 7 we present the resistivity ρdc(T ) vs. T ,
with the same parameters of Figure 1. Following Mutou
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Fig. 6. Adjustment of the low temperature specific heat Cv

vs. T , at very low temperatures, when the chemical potential
µ is located inside the conduction band. The parameters are
the same as Figure 1. We adjust the theoretical points to the
formula Cv = AT and we obtain A = 785.304.

Fig. 7. Resistivity ρdc(T ) vs. T , with the same parameters of
Figure 1. In the inset of the figure we present d(lnρ)/d(lnT ) =
(dρ/ρ)/(dT/T ) vs. T . The dashed line indicates the tempera-
ture where the insulator-metal transition occurs.

and Hirashima [47] who introduced a small imaginary part
Γ in the GFs Gff

kσ(z) and Gcc
kσ(z), i.e. replacing z = iω by

z + i Γ sgn(ω). Their justification is the existence in real
systems of scattering processes due to phonons and impu-
rities. In our case we employ the Γ = 0.001. Our result for
the resistivity agrees qualitatively well with several exper-
imental measurements [7–12]. The magnitude of ρdc satu-
rates at very low temperatures, which is a consequence of
the reentrant transition into a metallic state. This conclu-
sion is supported by the resistivity experimental results
of Lunkenheimer et al. [9]. They performed measurements
of ac conductivity of polycrystalline FeSi at temperatures
80 mK ≤ T ≤ 450 K and frequencies 20Hz ≤ ν ≤ 1 GHz
and concluded that at the metallic side, the dominant
charge carriers behave as band-like states and there is no
signal of hopping conductivity in this regime, and that
below 4.5 K the dielectric constant increases by a factor
of 10 when the temperature is lowered down to 1.6 K.
They concluded that this strong increase could indicate a
transition into a metallic state at low temperatures. This

Fig. 8. Adjustment of the low temperature resistivity ρdc(T )
vs. T 2, when the chemical potential µ is located inside the
conduction band. The parameters are the same as Figure 1. We
adjust the theoretical points to the formula ρdc(T ) = ρ0+AT 2,
with ρ0 = 3.315 and A = 1.344 × 106.

interpretation was also suggested by the results of Hunt
et al. [8] and Chernikov et al. [11].

The saturation trend of the resistivity ρdc,
at low temperatures, can be described qualita-
tively by evaluating the behavior of the derivative
d(lnρ)/d(lnT ) = (dρ/ρ)/(dT/T ) [11,50]. At low temper-
atures, the conductivity approaches to nonzero values
and d(lnρ)/d(lnT ) → 0 as T → 0. In the inset of
Figure 7 we present d(lnρ)/d(lnT ) vs. temperature. This
result is similar to the experimental results [10,11], the
temperature derivative of ρdc is negative over the whole
temperature range and tends to zero at low temperatures,
but contrary to the Paschen et al. results [10], where
the curve presents two minimums, in our case the curve
presents only one minimum, probably because we do
not take into account the impurity band that plays an
important role in the intermediate temperature range.

In Figure 8 we present the adjustment of the low tem-
perature resistivity ρdc(T ) vs. T 2, at very low tempera-
tures, when the chemical potential µ is located inside the
conduction band. The parameters are the same as Fig-
ure 1. We adjust the theoretical points to the formula
ρdc(T ) = ρ0 +AT 2, with ρ0 = 3.315 and A = 1.344× 106.
This result indicates that the X-boson approach correctly
describes the Fermi-liquid behavior of the resistivity at
very low temperatures.

In Figure 9 we present the electrical conductivity as
function of temperature. In the inset of the same figure we
present the adjustment of the conductivity in the activated
region to the formula σdc = σo exp (−∆σ/T ), with σo =
8.11 and ∆σ = 0.0082D, which agrees very well with the
indirect gap of the density of states ∆ind = 0.0085D, as
indicated in the inset of Figure 1.

In Figure 10 we present the different contributions to
the static susceptibility and the f localized density of
states at the chemical potential ρf (µ). The magnetic sus-
ceptibility follows the same low temperature regimes in-
dicated by the experimental results [7–12] and the zero
order contribution χo is only relevant in the temperature
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Fig. 9. Conductivity σdc(T ) vs. T , with the same parameters
of Figure 1. In the inset of the figure we present the conduc-
tivity σdc(T ) in the activated region vs. T .

Fig. 10. Susceptibility χ and localized density of states at the
chemical potential ρf (µ) vs. T using the same parameters of
Figure 1.

interval T > T0, whereas the Fermi-liquid contribution
χFL dominates the susceptibility in all the regimes. After
the chemical potential µ enters the conduction band, the
susceptibility presents a huge increase (see ρf (µ) in the
same figure), and as in the case of Cv analyzed in Fig-
ure 4, this region is characterized by the coherent regime
T < T0, and at very low temperatures it attains a sat-
uration limit characteristic of the Pauli-like contribution.
This behavior indicates a full compensation of the mag-
netic moments by the conduction electrons, characteristic
of the Kondo behavior of the system in this temperature
range. But the experimental results [8,10] in this region,
indicate a divergent behavior of the χ(T ) as T → 0, which
can be an indication that the ground state of the FeSi, is
not so simple, with part of the magnetic moments interact-
ing between themselves and part remaining paramagnetic
down to at least 50 mK [10].

In Figure 11 we present the susceptibility χ and insets
of the different low temperature susceptibilities regimes of
the model vs. temperature T . In the inset (a) we present
the fitting of the Curie-Weiss law χ = C/(T − Θ) for the
very low temperature regime (T < To), and we obtain the
following parameters set for this region: C = 0.05310D

Fig. 11. Susceptibility χ vs. T and insets of the low tem-
perature susceptibility regimes of the model, using the same
parameters of Figure 1.

and Θ = −0.0002890D, with Θ < 0, which is an indication
of the presence of anti-ferromagnetic correlations which
agrees well with experimental observations of the increase
of susceptibility following the Curie-Weiss law, in this tem-
perature range [8,10]. In the inset (b) of Figure 5 we con-
sider the thermal activated region (To < T < TKL) and we
fit the theoretical results with the same function employed
to fit the experimental results [8,10], χ = Co

T exp(−∆χ

T ),
where ∆χ is the magnetic gap. We obtain the follow-
ing parameters set for this region: Co = 0.3543D and
∆χ = 0.0032D, with Θ < 0.

5 Summary and conclusions

In this paper we study the low temperature properties of
Kondo insulators employing the X-boson method [34,35]
to study the PAM in the limit of infinite Coulomb repul-
sion U → ∞. In particular we choose a set of parameters
adequate to describe the FeSi and we study the system in
the low temperature regime where the hybridization gap is
completely open. The model is consistent with the exper-
imental results of several works [7–12]. We propose a sce-
nario where the low temperature properties are governed
by a reentrant transition into a metallic state, at very low
temperatures. In our case the insulator-metal transition in
FeSi is driven by strong Coulomb correlations that occur
when the chemical potential crosses the gap and enters
the conduction band generating a metallic ground state.

As we have discussed earlier, we do not consider the
role of the impurity band in the gap of FeSi, although
we consider that it is an important ingredient to explain
the behavior of the system in the low temperature region.
The finite localized density of states generated inside the
gap by the impurity band contributes to the specific heat
and the susceptibility and due to the existence of local-
ized states, the impurity band can change the position of
the chemical potential and the behavior of the electrical
conductivity.

The metallic ground state presents the general charac-
teristics of Fermi-liquids: linear specific heat, resistivity
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following a T 2 law and Pauli-like susceptibility as we
can see from Figures 6, 8 and 10, but with heavy quasi-
particles as we can infer from the huge γ coefficient pre-
sented in Figure 5 and from the saturation value of the
static susceptibility at very low temperatures, which in-
dicates a full compensation of the magnetic moments by
the conduction electrons, characteristic of the Kondo be-
havior of the system in this temperature range. We can
stress that the present treatment only furnishes a qual-
itative description of the low temperature regime of the
Kondo insulator FeSi. As discussed in the text, the X-
boson does not incorporate finite lifetime effects and we
do not take into account the role of the impurity band
inside the gap, but we recover the general behavior of sev-
eral properties of the very low temperature regime of the
compound [7–12].
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